
OBJECT ORIENTED
PROGRAMMING USING C++

Polymorphism

• Polymorphism occurs with objects
instantiated from a set of classes related
by inheritance to the same ancestor class.
– Each class provides its own implementation of

the (virtual) functions.
– Therefore, objects respond differently to the

same set of messages originally declared in
the ancestor.

R R GopalakrishnaGopalakrishna
Assistant ProfessorAssistant Professor

DCE, GurgaonDCE, Gurgaon

Polymorphism

• Polymorphism is most useful when
there are a series of related classes that
require the “same” behaviors.
– The individual classes typically define their

own specific behavior implementation.

Polymorphism

• Example #1:
– A company where there is an abstract

class Employee. Every employee must
earn money but the way earnings are
calculated may be different based upon the
type of employee (manager, commission
worker, hourly worker).

Polymorphism

• Example #2:
– Most 2-dimensional shapes have a

position, area, and perimeter. The specific
shape subclasses then define the
particular implementations of these
functions.

Polymorphism

• Example #3:
– All customers at a store are allowed to pay

with cash.
– Some customers have a charge account at

the store, and therefore have an alternate
way to pay.

– When information on customers is printed,
the ones with charge accounts should
show their balance, etc.

Virtual Functions

• A C++ virtual function is a function
that can be made polymorphic by
redefinition.

• A non-virtual function
– can still be redefined
– causes the function that is called on an

object to depend solely on the object’s
compile-time type

– is therefore not polymorphic.

Declaring Virtual Functions

class Parent {
virtual void poly();
void strict();

};
class Child: public Parent {

virtual void poly(); // redefinition
void strict(); // redefinition

};

Calling Virtual Functions

Parent *p(new Parent());
Parent *c(new Child());
p->poly(); // calls Parent::poly()
p->strict(); // calls Parent::strict()
c->poly(); // calls Child::poly()
c->strict(); // calls Parent::strict() !

Constructors / Destructors

• By definition a constructor function
cannot be defined as a virtual function.
– See Factory design patterns for ways

around this.
• A class that contains virtual functions

should also contain a virtual
destructor.

Abstract Classes
• An abstract class is a base class that

will never have an object instantiated
from it.
– Abstract classes are used only for

inheritance, they are not well-defined
enough for instantiation.

– Abstract classes provide a generic base
class that can be used by concrete classes
to provide an interface and/or
implementation.

Abstract Classes

• An abstract class in C++ is defined as
any class that contains at least one
pure virtual function.

Pure Virtual Functions

• A pure virtual function associates an
“initializer” with the virtual function
declaration.
virtual returnType functionName () const = 0;

• Derived classes may define an
implementation for the pure virtual
function.
– If the derived class does not include an

implementation for the pure virtual function,
the derived class is also abstract.

Pure Virtual Functions

• Defining pure virtual functions in the
abstract base class:
– Abstract.h: class declaration

virtual ret-type functionName(..,..,..) const = 0;
– Abstract.C: class definition

• There is no implementation in the *.C file.
– (although no one will stop you!)

Pure Virtual Functions

• Implementing virtual functions in a
concrete derived class:
– Concrete.h

virtual ret-type functionName(..,..,..) const;
– Concrete.C

ret-type Concrete::functionName(..,..,..) const {
// …

}

Pure Virtual Functions
Animal

Dog

Pure Virtual Functions
• Animal.h

virtual void speak() = 0;
• Animal.C

– No implementation
• Dog.h

virtual void speak();
• Dog.C

void speak() {
cout << “Arf!”;

}

For The Curious:
What is happening?

• Any time the C++ compiler encounters a
class definition containing a virtual
function, the compiler creates a virtual
function table (vtable) for the class.
– The vtable is used in the program to

determine which function implementation is
to be executed when the function is called.

– It also helps realize RTTI (not used here)

